• L3
  • Email :
  • Search :

13 Juli 2007

IPAL RUMAH SAKIT

Contoh Desain IPAL Zontech (Amazon Technology)

Peningkatan jenis pelayanan rumah sakit yang makin kompleks bisa menjadikan rumah sakit sebagai sumber distribusi penyakit apabila limbah yang dihasilkannya tidak dikelola dengan baik dan tepat. Limbah yang dihasilkan rumah sakit dapat berupa limbah padat, cair, dan gas yang sebagian merupakan limbah klinis dan non-klinis sehingga berpotensi dalam penyebaran penyakit.

Untuk menangani air limbahnya, rumah sakit diwajibkan oleh pemerintah menyediakan fasilitas IPAL sebelum air limbahnya dibuang ke badan air penerima. Oleh sebab itu, perlu dirancang Instalasi Pengolahan Air Limbah (IPAL) yang mampu mereduksi, menurunkan kadar pencemar ke taraf baku mutunya sehingga menjamin kelestarian fungsi ekosistem. IPAL ialah sistem pengolah yang mampu menurunkan kandungan pencemar air limbah yang berpotensi mencemari lingkungan sampai batas yang disyaratkan pemerintah. Tujuannya, mengurangi dampak buruk polutan di dalam air limbah dan mengendalikan pencemaran lingkungan.

Sumber Air Limbah
Air limbah rumah sakit adalah semua air limbah yang dihasilkan di dalam area rumah sakit, baik dari unit pelayanan medis, penunjang medis maupun dari unit nonmedis atau bagian umum. Berdasarkan sumbernya itu maka air limbah rumah sakit dapatlah dikelompokkan menjadi empat bagian.

i. Air limbah bersifat domestik. Air limbah ini berasal dari kamar mandi, dapur, air limbah cuci pakaian. Air limbah ini banyak mengandung zat organik.

ii. Air limbah medis. Air limbah ini berasal dari kegiatan medis rumah sakit seperti pembersihan luka, sisa-sisa darah, dll. Ini pun kaya zat organik. 
iii. Air limbah laboratorium. Air limbah ini berasal dari laboratorium sehingga banyak berisi logam berat. Air limbah ini sebaiknya diolah terpisah dengan air limbah domestik dan medis. Air limbah laboratorium ini dapat ditampung untuk selanjutnya diproses secara khusus. Setelah itu barulah efluennya dialirkan bersama-sama dengan efluen air limbah lainnya. 
iv. Air limbah kedokteran nuklir. Jenis limbah ini termasuk Buangan Berbahaya dan Beracun (B3) sehingga perlu ditangani secara khusus.

Sumber Air Limbah Rumah Sakit
Perawatan: Kamar mandi, WC, wastafel
Bedah: Wastafel dan air limbah cuci alat, cuci tangan, zat kimia, obat.
Laboratorium: Wastafel, air limbah cuci alat & tangan, cairan kimia, obat.
Poliklinik: Wastafel, air limbah cuci alat, cuci tangan, cairan kimia, obat.
Farmasi : Wastafel, air limbah cuci alat, cuci tangan, cairan kimia, obat
Radiologi: Wastafel dan air limbah cuci film, zat kimia.
IGD: Wastafel dan air limbah cuci alat, cuci tangan, cairan kimia, obat.
Dapur: Wastafel dan air limbah masak-memasak di dapur
Laundry: Wastafel dan mesin cuci-laundry.
Kantor: Kamar mandi, WC, wastafel
Kantin: Wastafel dan air limbah masak-memasak, cuci-mencuci di kantin
KM/WC UmumL Kamar mandi, WC, wastafel

Opsi IPAL Rumah Sakit
Tersedia banyak variasi dari sejumlah unit operasi dan unit proses yang bisa diterapkan untuk IPAL rumah sakit. Perbedaan jenis, jumlah, dan volume unit pengolah air limbah akan berpengaruh pada efisiensinya. Dalam hal produk Zontech, jenis unit, jumlah, dan volumenya diberitahukan kepada klien atau pengguna pada tahap awal perencanaan.

Amazon Technology (Zontech) ialah teknologi pengolahan air limbah hibrid (hybrid) yang memadukan unit operasi fisika dan unit proses biologi (bio-fisika) dan proses kimia (bergantung pada kebutuhan lembaga, badan, perusahaan). Unit yang dibuat didasarkan pada kondisi air limbah masing-masing yang dipengaruhi oleh jenis kegiatan lembaga atau perusahaan (pabrik makanan, minuman, domestic wastewater, rumah sakit, hotel, atau perkantoran).

Sebagai teknologi hibrid, Amazon Technology memadukan beberapa unit operasi-proses. Secara ringkas di bawah ini diberikan garis besar unit yang diterapkan. Pilihan dari alternatif yang tersedia, seperti diungkap di atas, bergantung pada karakteristik air limbah masing-masing.

Anaerobic Filter
Anaerobic Filter (AF), Fixed Bed atau biofilter ialah reaktor bermedia (batu, plastik, kayu, bambu, dll) untuk perlekatan bakteri. Media dipasang secara random dengan tiga mode operasi: upflow, downflow, fluidized bed. AF banyak diterapkan untuk mengolah air limbah ber-COD tinggi. Reaktor highrate ini telah luas diaplikasikan untuk mengolah air limbah berbagai jenis. Kunci suksesnya, reaktor ini mampu menghasilkan swahenti, yaitu pembatasan gerak bakteri pada suatu ruang dalam bentuk biofilm dan/atau biogranule (biobutir).

Pada reaktor AF ini, swahenti bakteri dapat menghasilkan umur lumpur yang tinggi, prosesnya stabil, mampu menangani perubahan debit dan kualitas air limbah, mampu pulih (recovery) setelah lama tidak beroperasi, misalnya setelah enam bulan reaktor berhenti operasi atau dormancy, ia mampu pulih hanya dalam tempo 1 - 2 pekan. Biomassanya pun mampu bertahan aktif setelah shutdown dengan syarat masih ada sisa airnya (tetap terendam).

UASB(Upflow Anaerobic Sludge Blanket)
Reaktor UASB diperkenalkan oleh Gatze Lettinga, pakar proses anaerob di Universitas Wageningen, Belanda pada 1970-an sebagai inovasi Upflow Anaerobic Filter buatan Young & McCarty (1969). Mulai saat itu proses ini banyak diterapkan untuk mengolah air limbah karena mampu membentuk sludge yang berat dan aktif hingga konsentrasi 100.000 mg/l di zone bawah reaktor dengan mekanisme retensi dan separasi.

Secara konsep, UASB serupa dengan reaktor highrate yang lain, yakni mampu menahan biomassa secara swahenti (self immobilization) dengan cara membentuk agregat atau konglomerat atau aglomerat yang tersusun oleh konsorsium bakteri. Dampak retensi (penahanan) swahenti ini, selain menambah aktivitas metanogeniknya juga menambah kecepatan endapnya sehingga waktu tinggal selnya melebihi waktu tinggal hidrolisnya.

Reaktor Hibrid Anaerob (Rehan)
Hibrid ialah reaktor bastar, yakni satu reaktor dicangkokkan pada reaktor lain. Dengan demikian, variasinya menjadi sangat banyak. Adapun hibrid di sini ialah bastar antara reaktor AF dan UASB. Inilah konfigurasi reaktor yang dikembangkan untuk antisipasi biomassa yang sulit mengendap seperti fluffy & loose flocc. Pada Rehan ini biomassanya terakumulasi di bagian bawah reaktor UASB & AF. Pada saatnya, akumulasi sludge bisa berlebih sehingga perlu dipompa dan dikeringkan di Sludge Drying Bed.

Rehan menawarkan penggabungan kelebihan atau keuntungan UASB dan AF dan berhasil mengolah limbah yang soluble maupun sebagian insoluble daripada reaktor jenis lain. Sejumlah kelebihannya adalah KPO yang lebih besar daripada yang mampu diterima AF, biobutir lebih mudah dikultivasi (ditanam dan dikelola) daripada UASB dan start up-nya lebih singkat daripada fluidized bed. Sedangkan untuk medianya, yang terbaik ialah yang punya kapasitas pelekatan tinggi (high biomass attachment capacity) seperti porus dan rasio luas per volumenya tinggi.

Selain bioproses anaerobik tersebut, Zontech pun menerapkan bioproses aerob yang memerlukan aerator dan unit operasi fisika seperti equalizing dan sedimentation. Unit yang dipilih didasarkan atas kualitas fisika air limbah dan diterapkan sesuai dengan kebutuhan. Zontech pun memberikan opsi untuk mengolah air limbah secara kimia dengan menerapkan unit koagulasi, flokulasi, netralisasi, disinfeksi, dll.


Selain rumah sakit, Amazon Technology juga diterapkan untuk mengolah air limbah dari institusi:
1. Domestic wastewater, sewage kota/kecamatan.
2. Rumah tangga, kompleks perumahan, asrama.
3. Rumah sakit, klinik, balai kesehatan.
4. Apartemen, kondominium, cottages.
5. Hotel, motel, villa, bungalow.
6. Pabrik, kawasan industri.
7. Restoran, rumah makan, supermarket, mall.
8. Taman-taman, lapangan golf.
9. Sekolah, kampus, kantor-kantor pemerintah, dll.
--------------------------------------------------------------------------------
ANAEROBIC BIOTECHNOLOGY

In brief, I would like to distribute a topic in anaerobic wastewater treatment. As one of the fundamental system on treatment technology, this kind of bioreactor is offering us an excellent chance to get the best result. Of course, there will be difference on the result of each other. On this research activities, the source of microorganism was rumen which contain a very rich of anaerobic bacteria and obtained from slaughterhouse at Ciroyom, Bandung. Before adaptation or acclimatization on the reactor, the seeding have been done in the tank for a few of weeks with introduced of glucose and nutrient so trace metals to support their growth. 

As we know, effluent from industries, especially food industries all tend to be heavily polluted and contain high concentration of organic matter. Such materials from sugarcane waste like mollasses are generally neither toxic nor even harmful, but they can rapidly exert a substantial oxygen demand when the effluent of the factory is discharged to a watercourse viz. lakes or rivers. As we have known that organic substances in wastewater contain some elements such as CHONSP and usually called as COD (Chemical Oxygen Demand) or BOD (Biochemical Oxygen Demand) and represent the strength of waste so used as indicators for water pollution control.

Biological treatment is one of the famous technology to decrease the pollutant of organic content. Treating municipal or industrial wastewater, one can apply bioreactor which are divided into two general groups depend on their medium of growth viz. suspended growth reactor and attached growth reactor. We also can separate the reactor as aerob and anaerobic reactor due to presence of oxygen. Anaerobic reactor is a bacterial decomposition by which the organic matter is broken down in the absence of dissolved oxygen to produce a mixture of CO2 and CH4 gases. The formation of CH4 gas is the key to the whole process because it is the method by which the COD of the waste is reduced and also because the CH4 content provides a commercial value as fuel for cooking or lighting (electricity).

Historical Aspect
As the oldest method to treat wastewater, anaerobic technology has some merit than aerob treatment. The first installation used to treat settled wastewater solid was known as Mouras automatic scaverager which developed by Louis H. Mouras, a French engineer in about 1860. So Donald Camenon was the first person recognizing that a combustible gas containing CH4 was produced when wastewater solid was liquified. This gas so called as “marsh or swamp gas” because burning on the surface of swamps.

At the beginning of this century, the treatment target changed from solids digestion systems to modern municipal wastewater treatment systems generally for combined industrial and domestic wastewater. Simple anaerobic treatment process such as various type of septic tanks were not suitable to treat large quantities of municipal wastewater. Therefore, in 1893 aerobic treatment were built viz. Trickling Filter and in 1914 the Activated Sludge process. Nowadays, these have been developed very widely with any variations in method of technology.

Just like aerobic treatment, as notice before, there are two kinds of common processes for anaerobic treatment i.e suspended growth and attached growth systems. The most common anaerobic attached growth treatment processes are anaerobic filter and fluidized or expanded bed processes and for suspended growth system the most common process is the UASB (Upflow Anaerobic Sludge Blanket) system used for the treatment of domestic wastewater.

Anaerobic Filter.
This type of anaerobic treatment consists of a reactor vessel filled with some proper type of solid media. The wastewater flows upward through the packed-bed, containing media on which anaerobic bacteria grow and are retained. Because the bacteria are retained and not washed out with the effluent, mean cell residence times can be obtained up to 100 days. High value of this can be achieved at short hydraulic retention times, consequently the anaerobic filter can be used in principle for the treatment of low strength wastewater at ambient temperature.

Fluidized bed and expanded bed reactor.
In both of the reactor, the wastewater is pumped upward through a bed consisting of an approprite medium (sand, coal, bamboo) on which a biological growth has developed. Effluent can be recycled to dilute the incoming wastewater and to provide an adequate flow to maintain the bed in a fluidized or expanded state.

UASB Reactor.
The wastewater is introduced at the bottom of the reactor, which first developed by Lettinga in 1972 at Netherland and it then flows upward through a blanket of active anaerobic sludge. Treatment occurs as a result of a proper contact of wastewater with the active sludge. The UASB presently process is the most widely used high rate anaerobic sewage treatment system. 

Hybrid Anaerobic Reactor.
This is a new hybrid reactor which combined a filter in the upper of the reactor and suspended growth in the bottom. The height and volume of each part is variable depend on the researchers and may be has different efficiency. From a few of researchs that has been done, we can take a general conclusion that this reactor has a better performance than the others.

Principle of Process
Generally, the anaerobic digestion can be divided into three step process accomplished by very large consortia of microorganisms and are distinguished:
a. Hydrolysis, the first step in degradation of organic matter involves reaction of extracellular enzymatic. Many microorganisms produce extracellular enzymes, suited for transformation or hydrolysis of higher molecular mass compounds such as lipid, proteins an carbohydrates into small molecules suitable for use as source of energy and cell carbon.
b. Acidogenesis is the second step, involves the bacterial conversion of the compounds resulting from the first step (hydrolysis) into intermediate compound such as volatile fatty acids, alcohol, hydrogen, CO2 and other low molecular weight compounds. The acid formers have an optimal pH between 5-6 although the normal pH near 7 in which still favorable compared to methanogens (methane formers) for final conversion of organics.
c. The third step is the sequense of aceto- and methanogenesis involves bacterial conversion of the intermediate compounds into methane gas and CO2. CH4 is produced mainly via acetic acid + hydrogen and CO2. Methanogenesis proceeds relatively slowly and generally is the rate limiting in anaerobic degradation. Bacteria that utilize acetate called acetoclastic (acetophilic) bacteria with the overall reaction is CH3COOH àCH4 + CO2.***
 

ReadMore »

Avicenna (980-1037)

I am sure, as muslims you have known who was Ibn Sina. In Indonesia, his great name was always linked with “kedokteran” (medical). Here is a resume of an article written by Chris Marvin and on my hope, this material could make you some “refreshing” or as a healing garden in the internet. Lets take meditation, special meditation for our life among our busy days in local environment and offices. Ok… not any more, read carefully, please.

Abu Ali al-Hussain Ibn Abdallah Ibn Sina was born in 980 A.D. at Afshaneh near Bukhara Turkistan. The young Bu Ali received his early education in Bukhara, and by the age of ten had become well versed in the study of the Qur'an and various sciences. He started studying philosophy by reading various Greek, Muslim and other books on this subject and learnt logic and some other subjects from Abu Abdallah Natili, a famous philosopher of the time.

While still young, he attained such a degree of expertise in medicine that his renown spread far and wide. At the age of 17, he was fortunate in curing Nooh Ibn Mansoor, the King of Bukhara, of an illness in which all the well-known physicians had given up hope. On his recovery, the King wished to reward him, but the young physician only desired permission to use his uniquely stocked library.

By 21, he was also given an administrative post and soon wrote his first book. Avicenna was now an established physician and political administrator, professions he continued to practice in the courts of various Iranian rulers, heads of the numerous successor states of Iran that emerged during the disintegration of the Abbasid authority.

On his father's death, Bu Ali left Bukhara and travelled to Jurjan where Khawarizm Shah welcomed him. There, he met his famous contemporary Abu Raihan al-Biruni. Later he moved to Ray and then to Hamadan, where he wrote his famous book Al-Qanun fi al-Tibb. Here he treated Shams al-Daulah, the King of Hamadan, for severe colic. From Hamadan he moved to Isphahan where he completed many of his monumental writings. Nevertheless, he continued travelling and the excessive mental exertion as well as political turmoil spoilt his health. Finally, he returned to Hamadan where he died in 1037 A.D.

He was the most famous physician, philosopher, encyclopaedist, mathematician and astronomer of his time. His major contribution to medical science was his famous book al-Qanun, known as the "Canon" in the West. The Qanun fi al-Tibb is an immense encyclopaedia of medicine extending over a million words. It surveyed the entire medical knowledge available from ancient and Muslim sources. Due to its systematic approach, "formal perfection as well as its intrinsic value, the Qanun superseded Razi's Hawi, Ali Ibn Abbas's Maliki, and even the works of Galen, and remained supreme for six centuries".

In addition to bringing together then available knowledge, the book is rich with the author's original contribution. His important original contribution includes such advances as recognition of the contagious nature of phthisis and tuberculosis; distribution of diseases by water and soil, and interaction between psychology and health. In addition to describing pharmacological methods, the book described 760 drugs and became the most authentic materia medica of the era. He was also the first to describe meningitis and made rich contributions to anatomy, gynaecology and child health.

Avicenna wrote 99 books, almost all in Arabic, the language of religious and scientific expression in the entire Muslim world at that time. However, two of his works, the `Daneshnameh-e-Alai' (Encylopedia of philosophical sciences) and a small treatise on the pulse, were written in Farsi, his native language. He wrote about natural philosophy and astronomy, theology and metaphysics, medicine, psychology, music, mathematics and physical sciences and he is also the reported author of Persian quatrains and short poems:
"Up from Earth's Centre through the Seventh Gate I rose, and on the Throne of Saturn sate, And many a knot unravelled by the Road, But not the Master-knot of Human Fate."
His philosophical encyclopaedia Kitab al-Shifa was a monumental work, embodying a vast field of knowledge from philosophy to science. He classified the entire field as follows: theoretical knowledge: physics, mathematics and metaphysics; and practical knowledge: ethics, economics and politics. His philosophy synthesises Aristotelian tradition, Neoplatonic influences and Muslim theology. The influence if this work is evident not only because of its influence in the Islamic world (which was already quite advanced at this time), but was also studied in European universities for centuries, first in a 12th-century translation by Gerard of Cremona (printed 15 times before 1500) and then in a new translation by Andrea Alpago of Belluno (1527 and later editions).

Ibn Sina also contributed to mathematics, physics, music and other fields. He explained the "casting out of nines" and its application to the verification of squares and cubes. He made several astronomical observations, and devised a contrivance similar to the vernier, to increase the precision of instrumental readings. In physics, his contribution comprised the study of different forms of energy, heat, light and mechanical, and such concepts as force, vacuum and infinity. He made the important observation that if the perception of light is due to the emission of some sort of particles by the luminous source, the speed of light must be finite. He propounded an interconnection between time and motion, and also made investigations on specific gravity and used an air thermometer.

In the field of music, his contribution was an improvement over Farabi's work and was far ahead of knowledge prevailing elsewhere on the subject. Doubling with the fourth and fifth was a 'great' step towards the harmonic system and doubling with the third seems to have also been allowed. Ibn Sina observed that in the series of consonances represented by (n + 1)/n, the ear is unable to distinguish them when n = 45. In the field of chemistry, he did not believe in the possibility of chemical transmutation because, in his opinion, the metals differed in a fundamental sense. These views were radically opposed to those prevailing at the time. His treatise on minerals was one of the "main" sources of geology of the Christian encyclopaedists of the thirteenth century. Besides Shifa his well-known treatises in philosophy are al-Najat and Isharat. **
ReadMore »

Non-Revenue Water

Here is another article on this subject.


1.1 General

Why is Non-Revenue Water (NRW) assessment so important for any water utility? It is common knowledge that the NRW in any water utility is a percentage of the water volume pumped into the network - but this simple percentage figure just isn’t sufficient to understand the water utility’ problem and elaborate an appropriate reduction strategy.

Therefore it was necessary to apply the nowadays available methods and tools which had helped to establish a first baseline. The following pages provide a brief overview on the methodology and the related terminology.

1.2 Methodology

Twenty years ago, leakage management was more based on a process of 'guesstimation' than on precise science. This has changed dramatically, kick-started by the regulatory pressure on UK water companies to cut leakage. Significant advances have been made in the understanding and modeling of water loss components and on defining the economic level of leakage for individual system. Yet, despite some encouraging success stories, most water supply systems worldwide continue to have high levels of water losses, many of which are almost certainly higher than their economic level.

Part of the problem was the lack of a meaningful standard approach to benchmarking and

reporting of leakage management performance. Surprisingly few countries have a national standard terminology and standard water balance calculation …and even then, they all differ from each other! Being aware of the problem of different water balance formats, methods and leakage performance indicators, the International Water Association (IWA) has developed a standard international water balance structure and terminology.

This standard format has meanwhile been adopted (with or without modifications) by national associations in a number of countries (for example Canada, Germany, Australia, New Zealand and South Africa and most recently the American Water Works Association (AWWA). This standard methodology is described in this paper which also includes a number of important

1.2.1 The Standard Water Balance

The level of water losses can be determined by conducting a Water Audit (North American Term) with the results shown in a Water Balance (International Term). To be consistent with the new international terminology, the term Water Balance has been used in this report.

A Water Balance is based on measurements or estimations of water produced, imported,

exported, used and lost. Whilst most water utilities are able to provide estimates of water

produced, imported, exported and consumed, they are less able to quantify the different

components of water lost. Water utilities around the world have always established water balances in one or the other way. But unfortunately, a wide diversity of formats and definitions is used, often within the same country. So it was (and still is) virtually impossible to compare UfW, NRW, leakage or water losses of different utilities.

Being aware of the problem of different water balance formats and methods, the IWA has

developed a standard international water balance structure and terminology, as already mentioned above. This form was generated drawing on the best practice of water utilities from many countries.

1.2.2 Water Balance Definitions

In the following, all terms used in Figure 1 above are listed in hierarchical order – as one would read the water balance form from left to right. Some of the terms are self-explanatory but are still listed and briefly explained in order to having a complete list available.

System Input Volume

The volume of treated water input to that part of the water supply system to which the water balance calculation relates – either from own production facilities or bulk supplies from others. If problems with production meters are know, relevant corrections will be made to the System Input Volume.

Authorized Consumption

The volume of metered and/or unmetered water taken by registered customers, the water supplier and others who are implicitly or explicitly authorized to do so by the water supplier, for residential, commercial and industrial purposes. It also includes water exported across operational boundaries. Authorized consumption may include items such as fire fighting and training, flushing of mains and sewers, street cleaning, watering of municipal gardens, public fountains, frost protection, building water, etc. These may be billed or unbilled, metered or unmetered.

Water Losses

The difference between System Input and Authorized Consumption. Water losses can be

considered as a total volume for the whole system, or for partial systems such as transmission or distribution schemes, or individual zones. Water Losses consist of Real Losses and Apparent Losses.

Billed Authorized Consumption

Those components of Authorized Consumption which are billed and produce revenue (also known as Revenue Water). Equal to Billed Metered Consumption plus Billed Unmetered Consumption.

Unbilled Authorized Consumption

Those components of Authorized Consumption which are legitimate but not billed and therefore do not produce revenue. Equal to Unbilled Metered Consumption plus Unbilled Unmetered Consumption.

Apparent Losses

Includes all types of inaccuracies associated with customer metering as well as data handling errors (meter reading and billing), plus unauthorized consumption (theft or illegal use).

Note: Over-registration of customer meters, leads to under-estimation of Real Losses. Under-registration of customer meters, leads to over-estimation of Real Losses.

Real Losses

Physical water losses from the pressurized system and the utility’s storage tanks, up to the point of customer use. In metered systems this is the customer meter, in unmetered situations this is the first point of use (stop tap/tap) within the property. The annual volume lost through all types of leaks, bursts and overflows depends on frequencies,

flow rates, and average duration of individual leaks, bursts and overflows.

Note: Although physical losses, after the point of customer use, are excluded from the

assessment of Real Losses, this does not necessarily mean that they are not significant or

worthy of attention for demand management purpose.

Billed Metered Consumption

All metered consumption which is also billed. This includes all groups of customers such as domestic, commercial, industrial or institutional and also includes water transferred across operational boundaries (water exported) which is metered and billed.

Billed Unmetered Consumption

All billed consumption which is calculated based on estimates or norms but is not metered. This might be a very small component in fully metered systems (for example billing based on estimates for the period a customer meter is out of order) but can be the key consumption component in systems without universal metering. This component might also include water transferred across operational boundaries (water exported) which is unmetered but billed.

Unbilled Metered Consumption

Metered Consumption which is for any reason unbilled. This might for example include metered consumption by the utility itself or water provided to institutions free of charge, including water transferred across operational boundaries (water exported) which is metered but unbilled.

Unbilled Unmetered Consumption

Any kind of Authorized Consumption which is neither billed nor metered. This component typically includes items such as fire fighting, flushing of mains and sewers, street cleaning, frost protection, etc. In a well run utility it is a small component which is very often substantially overestimated. Theoretically this might also include water transferred across operational boundaries (water exported) which is unmetered and unbilled – although this is an unlikely case.

Unauthorized Consumption

Any unauthorized use of water. This may include illegal water withdrawal from hydrants (for example for construction purposes), illegal connections, bypasses to consumption meters or meter tampering.

Customer Metering Inaccuracies and Data Handling Errors

Apparent water losses caused by customer meter inaccuracies and data handling errors in the meter reading and billing system.

Leakage on Transmission and/or Distribution Mains

Water lost from leaks and bursts on transmission and distribution pipelines. These might either be small leaks which are still unreported (e.g. leaking joints) or large bursts which were reported and repaired but did leak for a certain period before that.

Leakage and Overflows at Utility’s Storage Tanks

Water lost from leaking storage tank structures or overflows of such tanks caused by e.g.

operational or technical problems.

Leakage on Service Connections up to point of Customer Metering

Water lost from leaks on service connections from (and including) the tapping point until the point of customer use. In metered systems this is the customer meter, in unmetered situations this is the first point of use (stop tap/tap) within the property. Leakage on service connections might be reported bursts but will predominately be small leaks which do not surface and which run for long periods (often years).

Revenue Water

Those components of Authorized Consumption which are billed and produce revenue (also known as Billed Authorized Consumption). Equal to Billed Metered Consumption plus Billed Unmetered Consumption.

Non-Revenue Water

Those components of System Input which are not billed and do not produce revenue. Equal to Unbilled Authorized Consumption plus Real and Apparent Water Losses.

(Unaccounted-for Water)

Because of the widely varying interpretations and definitions of the term ‘Unaccounted for Water’, the IWA strongly recommends not to use this term any more – an if it is used at least to be defined like Non-Revenue Water. *

Nguyen Cong Thanh - SEAWUN Specialist

ReadMore »

Kuta Bali Surga Dunia

Rambut ikalnya yang pirang masih basah dan dikepang kuda. Buti-butir air asin menotol-notol di sekujur tubuhnya. Kaki putihnya yang jenjang diselonjorkan lalu kepalanya direbahkan di atas lipatan handuk tebal. Mata birunya menerawang ke awan putih di sela-sela sinar matahari jam dua siang. Ombak dan riak terus bekerja, datang dan pergi, gemuruh suaranya.

Seorang ibu tua berkulit agak gelap terbakar matahari, kontras dengan kulit bule itu, mulai membalurkan minyak di paha atasnya sampai ke jari-jari kakinya lalu memijat-mijatnya. Sejurus kemudian ibu berkain batik yang agak lusuh ini membalikkan tubuh putih itu sehingga tengkurap. Mulai tengkuknya, lalu ke punggungnya, sampai ke karet bikini bawahnya ia balurkan minyak lalu menekan-nekankan ujung jarinya, maju, mundur, maju, mundur... Yang dipijat memejamkan mata, nyaman sekali tampaknya. Mungkin tertidur oleh belaian desir angin pantai.

Sementara itu, kira-kira 12 meter dari gadis tadi ke arah bibir pantai berbaringlah dua wanita bule yang juga berbikini, sedang mandi mentari. Satu orang gemuk, usianya paruh baya dengan lengan dan paha bergelambir, kulitnya bercak-bercak coklat; satu lagi jauh lebih muda, tampak singset dan cantik bagi ukuran orang Indonesia, mungkin anaknya, sedang membaca buku tebal. Sekian meter dari sana, sekian meter lagi dari yang di sana dan sekian meter lagi dari yang di sebelah sana, juga ada pemandangan serupa di antara lalu-lalang orang-orang. Banyak sekali, tak terhitung lagi jumlahnya.

Begitulah keseharian di pantai “terpanas” dan terdemam di Bali, yaitu Kuta. Dulu John Travolta punya Saturday Night Fever, demam malam minggu, tetapi Kuta malah punya Every Night Fever, demam saban malam. Kuta, Legian, Sanur dan Tanah Lot hanyalah segelintir dari puluhan objek wisata yang disukai bule karena “hawa” panasnya. Ada 5S yang akrab di sana: sun, mandi mentari; sand, pasir-jemur; song, lagu diskotik, cafe; show, musik panggung; dan sex, samen-leven, seks bebas. Itu semua tentu saja tak lepas dari narkoba dan prostitusi dari kelas teri sampai kelas elite, mewah dan VIP. Khusus di Kuta ada satu S lagi, yaitu surfing, baik dalam arti selancar maupun olahraga voli pantai yang sudah menjadi tontonan “wajib” di sana. Tahun 1970-an, waktu saya SD, saya belum tahu ada voli jenis ini.

Kuta, di antara sekian banyak tujuan wisata, adalah nama yang paling populer karena begitu eksotis. Pantai pasir putihnya akrab sekali dengan dekapan tubuh-tubuh turis mancanegara dan juga domestik. Dekapan itu mulai dari yang berkaos pantai bercelana pendek gombrang ala Hawaii, yang hanya berbalut bikini hingga yang hanya mengenakan “segitiga” alias monokini. Dan yang betul-betul bugil tanpa sehelai benang pun ada, bergelimpangan bak putri duyung, terutama di Legian. Itulah turis kulit putih yang santai-santai saja seolah-olah berada di negaranya yang serba-boleh atau permisif atas pola hidup nudis.

Kejadian di atas menjadi prosesi rutin harian, layaknya acara formal yang terjadwal. Setelah membasahi tubuhnya dengan air, letih berenang, selancar atau sekadar jalan-jalan menyusuri garis air, turis biasanya minta dipijat di bawah pohon di pantai itu tanpa penghalang. Dengan mudah orang menontonnya dan tidak perlulah sungkan-sungkan karena sudah biasa. Yang sehari-hari tinggal di sana sudah maklum adanya, tak kaget lagi. Yang agak menahan napas tentulah orang yang baru kali pertama datang ke Kuta, Legian dan sekitarnya. Ini wajar terjadi lantaran yang dilihatnya adalah tubuh bule yang hanya ditutupi kain di bagian “rahasia” yang sudah tidak rahasia lagi. Berjam-jam hot show gratis itu berlangsung di sana, berganti dari satu orang ke orang lainnya dan dari satu ras ke ras lainnya, dari satu bangsa ke bangsa lainnya. Lengkap semua dari seluruh penjuru dunia. Hanya orang Indian Amerika dan Aborigin yang belum pernah saya lihat di sana.

Itulah Bali, potret “surga” dunia, kata orang-orang. Dan konon katanya, turis asing lebih kenal Bali ketimbang Indonesia. Indonesia itu di bagian mana Bali? Begitu joke yang sering saya dengar. Pamor Bali memang melebihi Indonesia. Padahal surga dunia ini hanyalah pulau kecil, terlampau kecil jika dibandingkan dengan Jawa. Butuh 24 Pulau Bali untuk menutupi Jawa. Pulau yang dianggap singkatan dari Bagus Agung Luhur Indah ini begitu mendunia, jadi serpihan nirwana. Begitulah ujaran kalangan yang hidup di dunia pariwisata dan pemuja gemerlap dunia. Hidup ini sekali, nikmati sepuas-puasnya, begitu katanya.***

ReadMore »

Belum Mau Shalat

Seorang rekan mengeluh, sudah belasan tahun dia tidak shalat. Sebagai PNS di sebuah dinas, dia pun sudah sering memanipulasi projek. Pernah dia mengambil 15% dari nilai projek. Sering juga memperoleh uang dengan cara “memaksa” halus para konsultan dan kontraktor agar mau memberikan uang “komitmen”. Kini, setelah anaknya masuk ke SMP dan ada dua lagi yang masih di SD, dia “tersadar”. Kesadaran itu muncul gara-gara dia mendengar ceramah di sebuah radio pada suatu pagi, menjelang berangkat kerja.
Karena belum yakin, dia tetap ragu untuk bertobat. Dia malu, karena dosanya sudah tak berbilang lagi. Adakah ampunan akan datang kepada dirinya yang sarat dosa?
Saudaraku, ..... ingatlah..., Allah itu Mahakasih. Yang puluhan tahun tidak shalat, yakinlah Allah akan mengampuni dosa seluas semesta ini asalkan mau memulai hidup baru. Jangan risau atas tumpukan dosa seluas alam raya sebab Allah tak peduli atas semua itu. Dia tetap mengampuni dosa jika kita menghadap-Nya dengan lurus.
Betulkah Allah menerima tobat kita walau lumuran dosa begitu tebal... ? Betul! Allah gembira...... Gembira ketika kita kembali ke jalan-Nya. Sangat gembira seperti ilustrasi berikut ini.
Allah lebih gembira pada tobat seorang mukmin daripada seorang pengembara di daerah tandus yang membawa kendaraan penuh makanan dan minuman. Dia lalu berbaring dan tertidur. Ketika bangun, kendaraannya sudah lenyap. Ia lalu mencarinya sampai kepanasan dan kehausan. Ia pasrah atas apa saja kehendak Allah, ia pun berkata: Aku akan kembali ke tempatku semula dan tidur sampai mati. Lalu dia meletakkan kepalanya bersandar di lengan-nya untuk menyambut kematian.
Tiba-tiba dia terbangun. Didapatinya kendaraannya sudah berada di hadapannya lengkap dengan makanan dan minumannya. Nah, Allah lebih gembira pada tobat seorang hamba mukmin daripada kegembiraan musafir itu ketika mendapatkan lagi kendaraan dan muatannya.
(H.R Bukhari, dikutip dari Penuntun Memulai Hidup Baru, tulisan Dr. Muhammad Al Ghazali, 1988).
Berikut ini hadits Qudsinya.
“Wahai anak manusia, setiap kali engkau meminta kepada-Ku dan mengharap dari-Ku, maka Aku akan ampunkan bagimu apa yang telah lalu dan Aku tak peduli betapapun besar dan banyaknya dosamu.
Wahai manusia, seandainya dosa-dosamu setinggi langit, kemudian engkau minta ampun kepada-Ku, maka Aku akan mengampunimu dan Aku tidak peduli.
Wahai anak manusia, seandainya engkau datang kepada-Ku dengan membawa setumpuk dosa sebe-sar bumi, kemudian engkau berjumpa dengan-Ku tanpa menyekutukan Aku dengan sesuatu pun, maka Aku akan memberimu ampunan sebesar bumi itu pula”. (R. Tirmidzi, ibid). *
ReadMore »

Tentang Kebersihan

Islam mengutamakan kebersihan. Tak hanya bersih lahir (fisik) tapi juga batin (psikis). Keduanya berkaitan, tak dapat dipisahkan. Maka, kalau hendak shalat, terlebih dulu diharuskan membersihkan fisik dengan wudhu. Tak hanya bersih badan, tapi juga pakaian dan tempat. Tak hanya bersih, tapi juga suci. Sebab, boleh jadi bersih tetapi tidak suci dari najis.

Berkaitan dengan bersih ini, ada beberapa istilah seperti tazkiyah, thaharah, dan nazhafah. Dalam hal perilaku bersih, ada istilah seperti ikhlas, thib at-nafs, bersih dari dosa, tobat, dll. Dengan kata lain, bersih itu menyangkut persoalan dunia dan akhirat. Dalam Qur’an istilah thaharah muncul sebanyak 31 kata dan tazkiyah 59 kata.

Khusus kebersihan harta dan jiwa digunakan istilah tazkiyah. Ungkapan Allah dalam Qur’an menyebutkan bahwa kata zakat seakar dengan kata tazkiyah. Kata ini terkait dengan kebersihan harta sehingga harta yang dizakati menjadi bersih dan yang yang tidak dizakati dinilai kotor. Kebersihan dan kekotoran harta berkaitan dengan jiwa orang yang diberi harta.

Bersih ialah bebas dari sesuatu yang kotor. Kotoran yang melekat di badan, pakaian, tempat tinggal, dll dapat mengakibatkan seseorang menjadi tidak nyaman. Badan yang kena tanah atau kotoran dinilai kotor secara jasmani tetapi belum tentu tidak suci. Ada beda antara bersih dan suci. Bisa saja ada orang yang tampak bersih tetapi tidak suci secara maknawiah.

Al-Quran dan hadis banyak menggunakan kata thaharah untuk kesucian badan dari kotoran atau najis atau dari sesuatu yang menimbulkan ketaknyamanan jasmani. Dalam surat al-Maidah: 6 dan an-Nisa: 43, ayat yang mewajibkan wudu dan/atau mandi sebelum shalat mengandung dua makna, yaitu thaharah secara jasmani karena dibersihkan dengan air dan thaharah maknawiah (abstrak) karena dibersihkan dengan tanah kalau tak ada air.

Kesucian harta adalah dimensi lain dari dimensi kesucian dalam Islam. Zakat untuk mensucikan harta. Penyucian harta ditempuh dengan zakat karena zakat berarti suci. Juga ditempuh dengan sadaqah, infaq, wakaf, dll. Firman Allah pada surat at-Taubah: 103, “Ambillah dari harta mereka itu shadaqah (zakat), sucikan dan bersihkan mereka dengannya. Harta yang tak dizakati menjadi kotor, bahkan membakar dirinya di neraka (at-Taubah: 34).

Rasul adalah tokoh kebersihan, kesucian dan pelestarian lingkungan. Kebersihan adalah sebagian dari iman.

(Disarikan dari “Kebersihan dalam Islam”, oleh Ust. Dr. Abdurrahman, M.A)
ReadMore »

Fermangano Biofilter

Ada di MAM edisi Mei 2007.


Artikel ini masih berkaitan dengan teknologi reduksi besi dan mangan dalam air baku yang digunakan sebagai sumber air minum. Pada artikel sebelumnya (MAM edisi 138, Maret 2007) sudah dibahas proses reduksinya dengan metode Cascade (judul: Cascade, the Art of Aeration). Lantas muncul komentar (pertanyaan): apakah Mn dalam air tanah, air danau dan waduk bisa hilang? Sebab, katanya, air tersebut umumnya ber-pH rendah akibat polusi dari material organik.

Sudah dipahami, pH berperan besar dalam proses biologi dan/atau kimia (biokimia), termasuk dalam penyisihan besi dan mangan. Pada kedua unsur tersebut, pH ikut menentukan keberhasilan pengolahan. Sudah terbukti pula mengolah mangan tak semudah mengolah besi. Ketika rendah pH-nya, aerasi tidak dapat menaikkan potensial mangan sehingga tak terjadi perubahan Mn2+ menjadi Mn4+. Tapi untungnya, konsentrasi besi dan mangan di air permukaan relatif rendah, sekitar 1 mg/l. Di air tanah lebih tinggi, kadar besinya bisa mencapai 10 mg/l dan mangan bisa lebih dari 2 mg/l.

Adakah siasat yang bisa dicoba? Ada! Lengkapilah Cascade dengan unit oksidator, letakkan di inlet Cascade lalu teteskan oksidatornya ke dalam aliran air. Agar optimal, bubuhkanlah kapur, Ca(OH)2. Dengan dosis tertentu pH airnya bisa mencapai 8,3 (atau 8,5 dan bahkan 9,5). Pada angka tersebut, tak hanya mangan dan besi yang dioksidasi tetapi semua logam dalam air akan diubah menjadi presipitat yang lantas disisihkan di unit sedimentasi dan/atau filtrasi. Agar tak dipusingkan oleh endapan yang terjadi, gunakan saja basa kuat NaOH. Adapun oksidatornya berupa kaporit, ozon atau kalium permanganat.

***

Tulisan kali ini pun masih berbicara soal besi dan mangan, menjadi pelengkap artikel Cascade, juga sebagai pembanding teknologi pengolahan besi-mangan yang tersedia di dunia perairminuman. Yang diketengahkan ialah teknologi yang belum diterapkan oleh PDAM. Di Eropa saja, menurut Mouchet di dalam J. American Water Work Association, 84, 1992, seperti dikutip Droste (1997), teknologi ini hanya ada 100-an unit. Namanya, biofilter atau Fermangano Biofilter.

Mendengar istilah biofilter biasanya pikiran kita langsung mengarah ke proses biologi, yaitu pengolahan air limbah semisal Filter-Tetes (Trickling Filter) dan variannya. Tidak salah, memang. Hanya saja, biofilter pun bisa diterapkan dalam proses pengolahan air minum dengan cara “beternak” bakteri. Keduanya memanfaatkan jasa mikroorganisme, khususnya bakteri, yang berkembang biak di dalam air olahan. Proses yang kompleks ini menggunakan filter untuk mendukung kehidupan bakteri ototrof (autotrophic) pengoksidasi besi dan mangan.

Faktanya, ada bakteri yang hanya mampu mengoksidasi besi saja, ada juga yang hanya mampu mengoksidasi mangan saja, tetapi ada juga yang bisa mengoksidasi keduanya. Ini membuktikan keragaman spesiesnya dan justru memperbesar peluang kita dalam upaya mengolah air yang mengandung besi dan mangan dalam konsentrasi berlebih. Tentu saja kondisi lingkungannya seperti nutrien, pH, temperatur, alkalinitas dapat mempengaruhi perkembangannya. Begitu pun, kondisi optimal pemisahan besi berbeda dengan kondisi optimal pemisahan mangan. Oleh sebab itu, idealnya, diperlukan dua filter berbeda untuk pemisahannya.

Disebut di atas, derajat keasaman (pH) air baku, mau tak mau, harus dikondisikan agar mendukung aktivitas bakteri. Umumnya, aktivitas bakteri lebih baik pada pH basa daripada asam. Namun pada pH netral pun proses biologi tersebut bisa berlangsung. Kelarutan oksigen di dalam air baku juga menjadi faktor penting. Droste menyatakan, aktivitas bakteri besi dan mangan akan turun kalau terjadi proses fisikokimia terhadap besi dan mangan. Akibatnya, kinerjanya ikut turun. Fenomena tersebut melibatkan oksigen yang justru menjadi andalan unit Cascade dan jenis reaktor lainnya dalam proses aerasi secara kimia.

Masih menurut Droste, agar optimal prosesnya hendaklah air yang akan diolah dengan biofilter ini dinitrifikasi dulu. Laju filtrasinya untuk pemisahan besi antara 25 - 40 m/jam (80 -130 ft/jam); laju untuk filter mangan 10 - 40 m/jam (33 -130 ft/jam. Laju filtrasinya bisa ditingkatkan dengan menggunakan media pasir yang effective size-nya 0,95 - 1,35. Frekuensi backwash-nya bergantung pada kualitas air baku dan debit air untuk backwash sebaiknya kurang dari 1% dari air produksi. Penggunaan filter ini dapat mengurangi kebutuhan zat kimia, mengurangi biaya operasi dan mereduksi volume lumpur.

Bakteri Pelaku

Layaknya bakteri, grup pengoksidasi besi-mangan pun bisa dimasukkan ke dalam kelompok bakteri “jahat” karena merugikan. Selain kesehatan, efeknya juga pada estetika dan ekonomi. Air menjadi keruh akibat partikulat besi (III, ferri) atau berupa koloid yang melayang-layang di air. Koloid ini tak bisa diendapkan begitu saja sebelum dikenakan proses pengolahan fisika-kimia atau biologi. Rasa dan bau air menjadi amis, berlendir, atau mengental. Alat plambing: wastafel, urinal, kloset, lantai, dan bak menjadi kuning coklat. Sulit dibersihkan kalau hanya digosok dengan sabun dan lap atau sabut kelapa. Dikatakan “baik” pun bisa saja karena dapat mengoksidasi besi terlarut menjadi besi yang dapat disisihkan atau presipitat.

Di antara bakteri pengoksidasi besi, yang terkenal ialah Thiobacillus ferrooxidans. Spesies ini dapat hidup ototrof dengan menggunakan ion besi dan sulfur sebagai donor elektron. Yang lainnya ialah Sulfolobus dari golongan Archaea. Adapun pengoksidasi mangan yang umum antara lain Leptothrix discophora. Reaksi umumnya: Fe2+ + bakteri besi à Fe3+. Dengan kata lain, ion ferro atau besi (II) dioksidasi oleh bakteri besi menjadi ion ferri atau besi (III). Selain “makan” besi, semua zat organik dan anorganik dalam air dapat dijadikan sumber makanan bakteri ini. Suhu, cahaya, pH dan oksigen terlarut dalam kondisi terukur menjadi faktor pendukung agar optimal pertumbuhannya.

Uniknya lagi dan ini menguatkan keragaman spesiesnya, oksidasi besi dapat berlangsung dalam kondisi aerob dan anaerob. Atas dasar kondisi lingkungannya, bakteri ini bisa dibedakan menjadi bakteri pengoksidasi besi dalam kondisi aerobik, yaitu bakteri pengoksidasi besi yang dapat hidup pada lingkungan beroksigen. Yang satunya ialah pengoksidasi besi yang anaerobik, yaitu bakteri yang dapat hidup pada lingkungan tanpa oksigen. Aneh tapi nyata, seperti tidak jelas, tetapi itulah hukum alam.

Metabolisme bakteri itu pun dapat ditinjau dari dua sisi berdasarkan aktivitasnya. Yang pertama ialah pengoksidasi yang melepaskan elektron besi secara enzimatis dan bersamaan dengan itu energi yang dihasilkannya digunakan untuk pertumbuhan bakteri. Yang kedua, pengoksidasi besi secara tidak langsung dan produk metabolismenya bersifat asam sehingga pH-nya menjadi rendah. Ketika pH-nya rendah ini justru ada bakteri yang merasa nyaman dan berkembang dengan baik. Di sini ada simbiosis, baik mutualisme maupun komensalisme.

Namun demikian, di samping manfaatnya dalam pengolahan air, bakteri pengoksidasi besi pun dapat mempercepat korosi pipa besi milik PDAM. Selain korosif, bakteri besi pun punya lapisan lendir sebagai pelindung sitoplasmanya dan membentuk lapisan lendir berbau amis. Parahnya lagi, lapisan lendir itu dapat digunakan oleh algae sebagai makanan untuk pertumbuhannya. Maka, kalau pertumbuhan bakteri besi tak terkendali bisa dipastikan perkembangan mikroalgae pun tak terkendali. Fenomena ini biasa disebut blooming. Bagaimana cara menghilangkannya? Mikroalgae bisa ditanggulangi dengan kuprisulfat, CuSO4. Masalahnya, tembaga (cuprum) termasuk logam berat sehingga kurang aman diterapkan pada air minum namun bisa untuk air pengisi kolam renang.

Akhirnya, sebagai sebuah opsi teknologi untuk mengolah air di antara sekian banyak teknologi yang umum dan yang jarang diterapkan, Fermangano Biofilter menjadi alternatif. Karena jarang diterapkan, unit ini masih perlu diteliti lebih lanjut, khususnya tentang kinetika reaksinya, efisiensinya, dan aspek keamanannya bagi manusia.*

ReadMore »

Prof. Lechner di BPLHD Jabar

Prof. Lechner, I would like to thank you about your explanation to my questions. In Indonesia, the difficulty on solid waste management is social responsibility, and not the technology. Not only the people on grass root, but also the public servants and politicians haven’t take care to their refuse and community sanitation yet. We could say, all of the landfills in Indonesia are in the form of dump or open dumping, that not allowed in Austria.

Ok..., it’s a nice lecture. Good luck.

Gede H. Cahyana

***

Senin, 9 Juli 2007 saya mengikuti kuliah ringkas Prof. Lechner di BPLHD Prov. Jawa Barat. Bertempat di kantornya di Jln. Naripan No. 25, Bandung, kuliah itu sedikit banyak memberikan satu tambahan ilmu tentang pengelolaan sampah di Austria. Sebagai dosen di Boku University, Austria, pakar persampahan ini memulainya dengan sanitary landfill (sanfil) lalu diikuti oleh composting.

Menurutnya, di Austria juga tidak semua orang sadar akan pengelolaan sampah. Masih banyak yang tak peduli pada sampah dan baru sebagian yang memilah-milah sampahnya. Hanya saja, mereka sudah punya sanfil yang betul-betul sanfil, artinya dikelola dengan taat asas sehingga air lindinya (leachate) pun sudah disalurkan dan diolah. Bagaimana di negara kita? Jangankan di Bandung, dalam lingkup Indonesia saja hal ini belum dilakukan (minimal dilakukan dengan baik).

Berikut ini profil singkat Prof. Peter Lechner.

Sekarang sebagai Head of the Institute for Waste Management, BOKU-University of Natural Resources and Applied Life Sciences, Vienna. 1970 Master of Science (MSc) in Civil Engineering and Water Management at BOKU University of Natural Resources and Applied Life Sciences, Vienna. 1974 to 1993 Institute for Water Quality and Waste Management, Vienna University of Technology. 1988 Doctoral Thesis (PhD): Optimizing of Composting, Vienna University of Technology. Since 1993 Institute of Waste Management, BOKU-University of Natural Resources and Applied Life Sciences, Vienna.

The research conducted by Prof. Lechner deals with subjects related to the study of:

  • Organic matter, biological treatment methods including old landfill sites and landfills for mechanically and biologically pretreated waste (Goals: Development of methods based on natural and biological processes and methods of analysis which produce new additional information, promote understanding of biological mechanisms and enable product and process control).
  • Inorganic Wastes and Incineration Residues Including Industrial Waste Disposal Sites (Goals: Development of methods and techniques for the pretreatment and assessment of incineration residues and inorganic wastes; Development of an understanding of the short- and long-term occurrence of mechanisms affecting the stabilisation and destabilisation of landfilled waste by using modern analytical methods and modelling of such processes).
  • Waste Logistics (Goals: Development and assessment of methods and techniques for the control of product and material streams and their composition, as well as of information flows in keeping with best practices in the co-ordination of logistics. When looking for optimum solutions, it is necessary to investigate the processes of waste generation, collection and recovery and their background with due consideration of social aspects, and to estimate and quantify the impact and changes of such parameters).

External professional activities:

1970 to 1972 Siemens AG, Austria
1972 to 1974 Civil Engineering Office Lengyel in Vienna

Other: He is Founder member and Chairman of the Austrian Compost Quality Society (Kompostgüteverband Österreich), Member of several standards committees, Consultant for the City of Vienna and waste management companies, Member of the editorial strategy group of the journal Waste Management, Member of the editorial board of the journal Müll und Abfall.

Some recent papers:

Lechner P., Smidt E.: Humic acids, a parameter for compost quality – a new approach for a sustainable soil management. In: Proceedings SARDINIA 2003 Ninth International Waste Management and Landfill Symposium (6-10 October 2003, S.Margherita di Pula, Cagliari, Sardinia, Italy) / CD. Hrsg.: T.H. CHRISTENSEN, R. COSSU, R. STEGMANN. CISA, 2003.

MOSTBAUER P., RIEGLER H., LECHNER P.: Artificial Weathering of Inorganic Waste – Evaluation of Laboratory Weathering and Leaching Methods. In: Proceedings SARDINIA 2003 Ninth International Waste Management and Landfill Symposium (6-10 October 2003, S.Margherita di Pula, Cagliari, Sardinia, Italy) / CD. Hrsg.: T.H. CHRISTENSEN, R. COSSU, R. STEGMANN. CISA, 2003.

H.-HUMER M., LECHNER P.: Effect of Methane Oxidation on the Water Balance of the Landfill Cover and the Vegetation Layer. In: Proceedings SARDINIA 2003 Ninth International Waste Management and Landfill Symposium (6-10 October 2003, S.Margherita di Pula, Cagliari, Sardinia, Italy) / CD. Hrsg.: T.H. CHRISTENSEN, R. COSSU, R. STEGMANN. CISA, 2003.

SABBAS T., POLETTINI A., POMI R., ASTRUP T., HJELMAR O., MOSTBAUER P., CAPPAI G, MAGEL G., SALHOFER S., SPEISER C., HEUSS-ASSBICHLER S., KLEIN R., LECHNER P. (members of the pHOENIX working group on Management of MSWI Residues): Management of Municipal Solid Waste Incineration Residues. In: Waste Management 23 (2003), pp. 61-88, Elsevier Science Ltd., 2003.

SMIDT E., LECHNER P., SCHWANNINGER M., HABERHAUER G., GERZABEK M.H.: Characterization of Waste Organic Matter by FT-IR Spectroscopy: Application in Waste Science. In: Applied Spectroscopy Vol. 56, No. 9, p. 1170 f. Hrsg.: Society for Applied Spectroscopy, 2002.

LECHNER P., HEISS-ZIEGLER C., H.-HUMER M.: How Composting Can Optimize Landfilling. In: BioCycle - Journal of Composting & Organics Recycling Vol. 43 No. 9 (September 2002), The JG Press Inc., ISSN 0276-5055, 2002.

MOSTBAUER P., LECHNER P., SABBAS T.: Long-Term Impact of Waste Storage on the Environment. In: Conference Proceedings and Monographs, Vol. 2, Ecology and Eco-Technologies, Proceedings of the Review Conference on the scientific cooperation between Austria and Poland (24.-28. Februar 2002, Wien), pp. 223-231. Hrsg.: Marian A. Herman, Scientific Centre of the Polish Academy of Sciences in Vienna, 2002.

SABBAS T., LECHNER P.: Developing an Assessment Method for the Middle- to Long-Term Pollutant Flux of Inorganic Residues. In: Proceedings from the Solid Waste Association of North America’s 6th Annual Landfill Symposium, pp. 153-163, SWANA, Silver Spring, 2001.

HUMER M., LECHNER P.: Microorganisms Against The Greenhouse Effect – Suitable Cover Layers For The Elimination of Methane Emissions From Landfills. In: Proceedings from the Solid Waste Association of North America’s 6th Annual Landfill Symposium, pp. 153-163, SWANA, Silver Spring, 2001.

***

ReadMore »