• L3
  • Email :
  • Search :

13 Juli 2007

IPAL RUMAH SAKIT

Contoh Desain IPAL Zontech (Amazon Technology)

Peningkatan jenis pelayanan rumah sakit yang makin kompleks bisa menjadikan rumah sakit sebagai sumber distribusi penyakit apabila limbah yang dihasilkannya tidak dikelola dengan baik dan tepat. Limbah yang dihasilkan rumah sakit dapat berupa limbah padat, cair, dan gas yang sebagian merupakan limbah klinis dan non-klinis sehingga berpotensi dalam penyebaran penyakit.

Untuk menangani air limbahnya, rumah sakit diwajibkan oleh pemerintah menyediakan fasilitas IPAL sebelum air limbahnya dibuang ke badan air penerima. Oleh sebab itu, perlu dirancang Instalasi Pengolahan Air Limbah (IPAL) yang mampu mereduksi, menurunkan kadar pencemar ke taraf baku mutunya sehingga menjamin kelestarian fungsi ekosistem. IPAL ialah sistem pengolah yang mampu menurunkan kandungan pencemar air limbah yang berpotensi mencemari lingkungan sampai batas yang disyaratkan pemerintah. Tujuannya, mengurangi dampak buruk polutan di dalam air limbah dan mengendalikan pencemaran lingkungan.

Sumber Air Limbah
Air limbah rumah sakit adalah semua air limbah yang dihasilkan di dalam area rumah sakit, baik dari unit pelayanan medis, penunjang medis maupun dari unit nonmedis atau bagian umum. Berdasarkan sumbernya itu maka air limbah rumah sakit dapatlah dikelompokkan menjadi empat bagian.

i. Air limbah bersifat domestik. Air limbah ini berasal dari kamar mandi, dapur, air limbah cuci pakaian. Air limbah ini banyak mengandung zat organik.

ii. Air limbah medis. Air limbah ini berasal dari kegiatan medis rumah sakit seperti pembersihan luka, sisa-sisa darah, dll. Ini pun kaya zat organik. 
iii. Air limbah laboratorium. Air limbah ini berasal dari laboratorium sehingga banyak berisi logam berat. Air limbah ini sebaiknya diolah terpisah dengan air limbah domestik dan medis. Air limbah laboratorium ini dapat ditampung untuk selanjutnya diproses secara khusus. Setelah itu barulah efluennya dialirkan bersama-sama dengan efluen air limbah lainnya. 
iv. Air limbah kedokteran nuklir. Jenis limbah ini termasuk Buangan Berbahaya dan Beracun (B3) sehingga perlu ditangani secara khusus.

Sumber Air Limbah Rumah Sakit
Perawatan: Kamar mandi, WC, wastafel
Bedah: Wastafel dan air limbah cuci alat, cuci tangan, zat kimia, obat.
Laboratorium: Wastafel, air limbah cuci alat & tangan, cairan kimia, obat.
Poliklinik: Wastafel, air limbah cuci alat, cuci tangan, cairan kimia, obat.
Farmasi : Wastafel, air limbah cuci alat, cuci tangan, cairan kimia, obat
Radiologi: Wastafel dan air limbah cuci film, zat kimia.
IGD: Wastafel dan air limbah cuci alat, cuci tangan, cairan kimia, obat.
Dapur: Wastafel dan air limbah masak-memasak di dapur
Laundry: Wastafel dan mesin cuci-laundry.
Kantor: Kamar mandi, WC, wastafel
Kantin: Wastafel dan air limbah masak-memasak, cuci-mencuci di kantin
KM/WC UmumL Kamar mandi, WC, wastafel

Opsi IPAL Rumah Sakit
Tersedia banyak variasi dari sejumlah unit operasi dan unit proses yang bisa diterapkan untuk IPAL rumah sakit. Perbedaan jenis, jumlah, dan volume unit pengolah air limbah akan berpengaruh pada efisiensinya. Dalam hal produk Zontech, jenis unit, jumlah, dan volumenya diberitahukan kepada klien atau pengguna pada tahap awal perencanaan.

Amazon Technology (Zontech) ialah teknologi pengolahan air limbah hibrid (hybrid) yang memadukan unit operasi fisika dan unit proses biologi (bio-fisika) dan proses kimia (bergantung pada kebutuhan lembaga, badan, perusahaan). Unit yang dibuat didasarkan pada kondisi air limbah masing-masing yang dipengaruhi oleh jenis kegiatan lembaga atau perusahaan (pabrik makanan, minuman, domestic wastewater, rumah sakit, hotel, atau perkantoran).

Sebagai teknologi hibrid, Amazon Technology memadukan beberapa unit operasi-proses. Secara ringkas di bawah ini diberikan garis besar unit yang diterapkan. Pilihan dari alternatif yang tersedia, seperti diungkap di atas, bergantung pada karakteristik air limbah masing-masing.

Anaerobic Filter
Anaerobic Filter (AF), Fixed Bed atau biofilter ialah reaktor bermedia (batu, plastik, kayu, bambu, dll) untuk perlekatan bakteri. Media dipasang secara random dengan tiga mode operasi: upflow, downflow, fluidized bed. AF banyak diterapkan untuk mengolah air limbah ber-COD tinggi. Reaktor highrate ini telah luas diaplikasikan untuk mengolah air limbah berbagai jenis. Kunci suksesnya, reaktor ini mampu menghasilkan swahenti, yaitu pembatasan gerak bakteri pada suatu ruang dalam bentuk biofilm dan/atau biogranule (biobutir).

Pada reaktor AF ini, swahenti bakteri dapat menghasilkan umur lumpur yang tinggi, prosesnya stabil, mampu menangani perubahan debit dan kualitas air limbah, mampu pulih (recovery) setelah lama tidak beroperasi, misalnya setelah enam bulan reaktor berhenti operasi atau dormancy, ia mampu pulih hanya dalam tempo 1 - 2 pekan. Biomassanya pun mampu bertahan aktif setelah shutdown dengan syarat masih ada sisa airnya (tetap terendam).

UASB(Upflow Anaerobic Sludge Blanket)
Reaktor UASB diperkenalkan oleh Gatze Lettinga, pakar proses anaerob di Universitas Wageningen, Belanda pada 1970-an sebagai inovasi Upflow Anaerobic Filter buatan Young & McCarty (1969). Mulai saat itu proses ini banyak diterapkan untuk mengolah air limbah karena mampu membentuk sludge yang berat dan aktif hingga konsentrasi 100.000 mg/l di zone bawah reaktor dengan mekanisme retensi dan separasi.

Secara konsep, UASB serupa dengan reaktor highrate yang lain, yakni mampu menahan biomassa secara swahenti (self immobilization) dengan cara membentuk agregat atau konglomerat atau aglomerat yang tersusun oleh konsorsium bakteri. Dampak retensi (penahanan) swahenti ini, selain menambah aktivitas metanogeniknya juga menambah kecepatan endapnya sehingga waktu tinggal selnya melebihi waktu tinggal hidrolisnya.

Reaktor Hibrid Anaerob (Rehan)
Hibrid ialah reaktor bastar, yakni satu reaktor dicangkokkan pada reaktor lain. Dengan demikian, variasinya menjadi sangat banyak. Adapun hibrid di sini ialah bastar antara reaktor AF dan UASB. Inilah konfigurasi reaktor yang dikembangkan untuk antisipasi biomassa yang sulit mengendap seperti fluffy & loose flocc. Pada Rehan ini biomassanya terakumulasi di bagian bawah reaktor UASB & AF. Pada saatnya, akumulasi sludge bisa berlebih sehingga perlu dipompa dan dikeringkan di Sludge Drying Bed.

Rehan menawarkan penggabungan kelebihan atau keuntungan UASB dan AF dan berhasil mengolah limbah yang soluble maupun sebagian insoluble daripada reaktor jenis lain. Sejumlah kelebihannya adalah KPO yang lebih besar daripada yang mampu diterima AF, biobutir lebih mudah dikultivasi (ditanam dan dikelola) daripada UASB dan start up-nya lebih singkat daripada fluidized bed. Sedangkan untuk medianya, yang terbaik ialah yang punya kapasitas pelekatan tinggi (high biomass attachment capacity) seperti porus dan rasio luas per volumenya tinggi.

Selain bioproses anaerobik tersebut, Zontech pun menerapkan bioproses aerob yang memerlukan aerator dan unit operasi fisika seperti equalizing dan sedimentation. Unit yang dipilih didasarkan atas kualitas fisika air limbah dan diterapkan sesuai dengan kebutuhan. Zontech pun memberikan opsi untuk mengolah air limbah secara kimia dengan menerapkan unit koagulasi, flokulasi, netralisasi, disinfeksi, dll.


Selain rumah sakit, Amazon Technology juga diterapkan untuk mengolah air limbah dari institusi:
1. Domestic wastewater, sewage kota/kecamatan.
2. Rumah tangga, kompleks perumahan, asrama.
3. Rumah sakit, klinik, balai kesehatan.
4. Apartemen, kondominium, cottages.
5. Hotel, motel, villa, bungalow.
6. Pabrik, kawasan industri.
7. Restoran, rumah makan, supermarket, mall.
8. Taman-taman, lapangan golf.
9. Sekolah, kampus, kantor-kantor pemerintah, dll.
--------------------------------------------------------------------------------
ANAEROBIC BIOTECHNOLOGY

In brief, I would like to distribute a topic in anaerobic wastewater treatment. As one of the fundamental system on treatment technology, this kind of bioreactor is offering us an excellent chance to get the best result. Of course, there will be difference on the result of each other. On this research activities, the source of microorganism was rumen which contain a very rich of anaerobic bacteria and obtained from slaughterhouse at Ciroyom, Bandung. Before adaptation or acclimatization on the reactor, the seeding have been done in the tank for a few of weeks with introduced of glucose and nutrient so trace metals to support their growth. 

As we know, effluent from industries, especially food industries all tend to be heavily polluted and contain high concentration of organic matter. Such materials from sugarcane waste like mollasses are generally neither toxic nor even harmful, but they can rapidly exert a substantial oxygen demand when the effluent of the factory is discharged to a watercourse viz. lakes or rivers. As we have known that organic substances in wastewater contain some elements such as CHONSP and usually called as COD (Chemical Oxygen Demand) or BOD (Biochemical Oxygen Demand) and represent the strength of waste so used as indicators for water pollution control.

Biological treatment is one of the famous technology to decrease the pollutant of organic content. Treating municipal or industrial wastewater, one can apply bioreactor which are divided into two general groups depend on their medium of growth viz. suspended growth reactor and attached growth reactor. We also can separate the reactor as aerob and anaerobic reactor due to presence of oxygen. Anaerobic reactor is a bacterial decomposition by which the organic matter is broken down in the absence of dissolved oxygen to produce a mixture of CO2 and CH4 gases. The formation of CH4 gas is the key to the whole process because it is the method by which the COD of the waste is reduced and also because the CH4 content provides a commercial value as fuel for cooking or lighting (electricity).

Historical Aspect
As the oldest method to treat wastewater, anaerobic technology has some merit than aerob treatment. The first installation used to treat settled wastewater solid was known as Mouras automatic scaverager which developed by Louis H. Mouras, a French engineer in about 1860. So Donald Camenon was the first person recognizing that a combustible gas containing CH4 was produced when wastewater solid was liquified. This gas so called as “marsh or swamp gas” because burning on the surface of swamps.

At the beginning of this century, the treatment target changed from solids digestion systems to modern municipal wastewater treatment systems generally for combined industrial and domestic wastewater. Simple anaerobic treatment process such as various type of septic tanks were not suitable to treat large quantities of municipal wastewater. Therefore, in 1893 aerobic treatment were built viz. Trickling Filter and in 1914 the Activated Sludge process. Nowadays, these have been developed very widely with any variations in method of technology.

Just like aerobic treatment, as notice before, there are two kinds of common processes for anaerobic treatment i.e suspended growth and attached growth systems. The most common anaerobic attached growth treatment processes are anaerobic filter and fluidized or expanded bed processes and for suspended growth system the most common process is the UASB (Upflow Anaerobic Sludge Blanket) system used for the treatment of domestic wastewater.

Anaerobic Filter.
This type of anaerobic treatment consists of a reactor vessel filled with some proper type of solid media. The wastewater flows upward through the packed-bed, containing media on which anaerobic bacteria grow and are retained. Because the bacteria are retained and not washed out with the effluent, mean cell residence times can be obtained up to 100 days. High value of this can be achieved at short hydraulic retention times, consequently the anaerobic filter can be used in principle for the treatment of low strength wastewater at ambient temperature.

Fluidized bed and expanded bed reactor.
In both of the reactor, the wastewater is pumped upward through a bed consisting of an approprite medium (sand, coal, bamboo) on which a biological growth has developed. Effluent can be recycled to dilute the incoming wastewater and to provide an adequate flow to maintain the bed in a fluidized or expanded state.

UASB Reactor.
The wastewater is introduced at the bottom of the reactor, which first developed by Lettinga in 1972 at Netherland and it then flows upward through a blanket of active anaerobic sludge. Treatment occurs as a result of a proper contact of wastewater with the active sludge. The UASB presently process is the most widely used high rate anaerobic sewage treatment system. 

Hybrid Anaerobic Reactor.
This is a new hybrid reactor which combined a filter in the upper of the reactor and suspended growth in the bottom. The height and volume of each part is variable depend on the researchers and may be has different efficiency. From a few of researchs that has been done, we can take a general conclusion that this reactor has a better performance than the others.

Principle of Process
Generally, the anaerobic digestion can be divided into three step process accomplished by very large consortia of microorganisms and are distinguished:
a. Hydrolysis, the first step in degradation of organic matter involves reaction of extracellular enzymatic. Many microorganisms produce extracellular enzymes, suited for transformation or hydrolysis of higher molecular mass compounds such as lipid, proteins an carbohydrates into small molecules suitable for use as source of energy and cell carbon.
b. Acidogenesis is the second step, involves the bacterial conversion of the compounds resulting from the first step (hydrolysis) into intermediate compound such as volatile fatty acids, alcohol, hydrogen, CO2 and other low molecular weight compounds. The acid formers have an optimal pH between 5-6 although the normal pH near 7 in which still favorable compared to methanogens (methane formers) for final conversion of organics.
c. The third step is the sequense of aceto- and methanogenesis involves bacterial conversion of the intermediate compounds into methane gas and CO2. CH4 is produced mainly via acetic acid + hydrogen and CO2. Methanogenesis proceeds relatively slowly and generally is the rate limiting in anaerobic degradation. Bacteria that utilize acetate called acetoclastic (acetophilic) bacteria with the overall reaction is CH3COOH àCH4 + CO2.***
 

3 komentar:

  1. wajib tuh Rumah Sakit punya IPAL karena Air Limbah nya kan mngandung bakteri ,
    makasih bro info nya

    BalasHapus
  2. maaf mungkin dengan gambar akan lebih jelas ... apa itu amazon . UASB . reaktor hibrid .
    matur nuwun

    BalasHapus
  3. Apa ada alat pengukur kadar air ipal.........?????/

    BalasHapus